METALATION OF TRIAZINES, II (1) SYNTHESIS OF BI-1,2,4-TRIAZINES AND 1,2,4-TRIAZINE-6-CARBALDEHYDES

Bernd Glassl, Udo Sinks, and Hans Neunhoeffer *

Institut für Organische Chemie der Technischen Hochschule Darmstadt, Petersenstraße 22, D-64287 Darmstadt, Germany; FAX: 49-6151-163278; e-mail: di88@hrzpub.th-darmstadt.de

Abstract: 5-Methoxy-6H-1,2,4-triazines $\underline{1a} - \underline{c}$, 5H-1,2,4-triazine-6-diethylcarboxamides $\underline{7a}$, \underline{b} and 3,6-diphenyl-1,2,4-triazine 4-oxide $\underline{10}$ were lithiated with lithium 2,2,6,6-tetramethylpiperidide and the formed lithio-1,2,4-triazines $\underline{2a} - \underline{c}$, $\underline{8a}$, \underline{b} , $\underline{11}$ reacted with chlorotrimethylsilane and other reagents to give the bi-1,2,4-triazines $\underline{3a} - \underline{c}$, $\underline{4a}$, \underline{b} , $\underline{12}$, $\underline{13}$ 6-Lithio-1,2,4-triazines $\underline{2a}$, \underline{b} afforded $\underline{3a}$, \underline{b} and 5-methoxy-1,2,4-triazine-6-carbaldehydes $\underline{5a}$, \underline{b} when reacted with N-formylpiperidine or ethyl formate.

Introduction

Lithio-substituted heterocycles are versatile intermediates in the synthesis of complex heterocyclic compounds (2). Lithiopyridines (3 - 6), lithiopyrazines (4, 7 - 9), lithiopyridazines (3, 4, 7, 10), and lithiopyrimidines (3 - 7, 10 - 15) are known. Recently we reported the first synthesis of lithio-1,2,4-triazines (1) and their reactions with aldehydes and iodine.

The o-directed metalation reaction involves deprotonation by a strong base in the ortho-position with respect to a directing metalating group containing a heteroatom. This leads to o-lithiated species which are converted into o-substituted products by treatment with an electrophilic reagent.

In addition to the 5-methoxy group (1) we used the 6-diethylcarboxamide group and the 4-N-oxide functionality as an o-directing group.

Results and Discussion

a) Synthesis of 6,6'-Bi-1,2,4-triazines

Treatment of the 3-aryl-5-methoxy-1,2,4-triazines $\underline{1a} - \underline{c}$ with four equivalents lithium 2,2,6,6tetramethylpiperidide (LiTMP) in tetrahydrofurane (THF) at -100 °C and reaction of the formed 6-lithio derivatives $\underline{2a} - \underline{c}$ with chlorotrimethylsilane by the *equilibrium shift procedure* (8) afforded unexpectedly not the 6-trimethylsilyl-1,2,4-triazines but the 5,5'-dimethoxy-6,6'-bi-1,2,4-triazines $\underline{3a} - \underline{c}$ and the 1,6-dihydro-6,6'bi-1,2,4-triazines $\underline{4a}$, \underline{b} . As described earlier (1), to shift the equilibrium $\underline{1} + \text{LiTMP} \implies \underline{2} + \text{TMPH}$ to the right side, getting the highest yield of $\underline{2}$, one has to use a three- to fourfold excess of LiTMP.

Reaction of <u>1c</u> with LiTMP and chlorotrimethylsilane led only to the formation of <u>3c</u>, we did not isolate any 3,3'-bis-(4-chlorophenyl)-1,6-dihydro-5,5'-dimethoxy-6,6'-bi-1,2,4-triazine <u>4c</u>.

To our knowledge, besides our communication of the structure of 5,5'-dimethoxy-3,3'-diphenyl-6,6'-bi-1,2,4-triazine <u>3a</u> (16), no 6,6'-bi-1,2,4-triazines have been published so far. Lee synthesized 6,6'-bi-1,2,4triazines starting from 6-ethinyl-1,2,4-triazines (17).

As shown in Table 1 the yields of $\underline{3a}$ and $\underline{4a}$ depend on the presence of chlorotrimethylsilane or other chlorosilanes and on the reaction time of $\underline{1a}$ with LiTMP. The use of reagents being sterically more hindered and at the same time less electrophilic than chlorotrimethylsilane gave lower yields of $\underline{3a}$ and $\underline{4a}$.

reaction-	electrophile	yield [%]	yield [%]	recovered [%]
time [min]		<u>3a</u>	<u>4a</u>	<u>1</u> a
40	none	0	0	54
90	none	5	0	48
90	Me ₃ SiCl	24	5	33
120	Me ₃ SiCl	46	17	< 1
180	Me ₃ SiCl	18	62	< 1
120	Et ₃ SiCl	19	7	< 1
120	n-Pr ₃ SiCl	17	6	< 1
120	Ph ₃ SiCl	0	0	83

Table 1: Reaction conditions for the lithiation of 5-methoxy-3-phenyl-1,2,4-triazine 1a.

Queguiner et al. (18) obtained 2,2'-biquinoxalines by o-directed metalation of 2-chloro and 2-methoxyquinoxaline in the presence of chlorotrimethylsilane. The authors propose a carbanionic mechanism. Grignon-Dubois et al. (19) synthesized 2,2'-bis-(trimethylsilyl)-1,1',2,2'-tetrahydro-bi-1,1'-isoquinolines when they reacted isoquinoline with chlorotrimethylsilane and lithium or magnesium. A radical mechnism is suggested.

B. Glassi, U. Sinks, and H. Neunhoeffer

b) Synthesis of 1,2,4-Triazine-6-carbaldehydes

When we reacted the 6-lithio-3-aryl-5-methoxy-1,2,4-triazines 2a, <u>b</u> with N-formylpiperidine or ethyl formate by the *procedure of accumulation* (8) we obtained together with the expected 3-aryl-5-methoxy-1,2,4-triazine-6-carbaldehydes 5a, <u>b</u> the 6,6'-bi-1,2,4-triazines 3a, <u>b</u> (Scheme 2). The use of N-formylpiperidine as formylating agent gave better yields both of 5 and 3 (see Table 2).

SCHEME 2

Table 2: Reagents for formylation of 6-lithio-5-methoxy-1,2,4-triazines 2a, b

_					1
	electrophile	R	yield <u>5</u> [%]	yield 3 [%]	
	ethyl formate	Ph	12	4	
	N-formylpiperidine	Ph	41	6	
	ethyl formate	pTol	•14	5	
	N-formylpiperidine	pTol	39	21	

c) Synthesis and Metalation of 1,2,4-Triazine-6-diethylcarboxamides

Similarly we obtained the 3,3'-diaryl-5,5'-bi-1,2,4-triazine-6,6'-bis-diethylcarboxamides $\underline{9a}$, \underline{b} in 30 % yield when we lithiated the 3-aryl-1,2,4-triazine-6-diethylcarboxamides $\underline{7a}$, \underline{b} with LiTMP and reacted the formed lithio-1,2,4-triazines $\underline{8a}$, \underline{b} with chlorotrimethylsilane by the *equilibrium shift procedure* (see Scheme 3).

When we added benzaldehyde to <u>**8a**</u>, <u>**b**</u>, we did not observe any reaction with this electrophile; we isolated the 5,5'-bi-1,2,4-triazines <u>**9a**</u>, <u>**b**</u> in 59 % yield. Finally we obtained <u>**9a**</u>, <u>**b**</u> in 70% yield when we did not add any electrophile to <u>**8a**</u>, <u>**b**</u>. This means that there is no effect of chlorotrimethylsilane on the formation of 5,5'-bi-1,2,4triazines 9, contrary to the formation of 3.

SCHEME 3

Reacting 6-lithio-5-methoxy-3-phenyl-1,2,4-triazine 2a with 3-(4-tolyl)-1,2,4-triazine-6-diethylcarboxamide 7b we obtained the 5,5'-bi-1,2,4-triazine 9b in 68% yield and traces of the 6,6'-bi-1,2,4-triazine 3a, no *mixed* 5,6'-bi-1,2,4-triazine could be isolated.

5,5'-Bi-1,2,4-triazines are already known; they were prepared by reaction of 5H-1,2,4-triazines with sodium methoxide (20), sodium cyanide (21, 22), potassium cyanide (18, 21) or potassium amide (20, 24, 25).

We obtained the unknown 3-aryl-1,2,4-triazine-6-diethylcarboxamides 7a, <u>b</u> by reaction of 3-aryl-1,2,4-triazine-6-carboxylates <u>6a</u>, <u>b</u> (26) with diethylamine in the presence of triethylaluminum (27).

d) Metalation of 3,6-Diphenyl-1,2,4-triazine-4-oxide

3,6-Diphenyl-1,2,4-triazine 4-oxide <u>10</u> (28) can also be lithiated to give <u>11</u>. Reaction of <u>10</u> with chlorotrimethylsilane led to the isolation of 3,3',6,6'-tetraphenyl-5,5'-bi-1,2,4-triazine 4,4'-dioxide <u>12</u> and 3,3',6,6'-tetraphenyl-5,5'-bi-1,2,4-triazine <u>13</u> (29). This means that not only dimerization occured but also partial reduction of the N-oxide group. When we did not add any electrophile to <u>11</u> we obtained the same yields of <u>12</u> and <u>13</u>. This result corresponds to the previous findings that there is no promoting effect of chlorotrimethylsilane on the formation of 5,5'-bi-1,2,4-triazines <u>9a</u>, <u>b</u>.

Conclusion

The mechanism - ionic or radical - of the reactions described is not yet completely evaluated. We suppose that the reactions giving 6,6'-bi-1,2,4-triazines $\underline{3}$, $\underline{4}$ follow a radical pathway, whereas the dimerizations leading to 5,5'-bi-1,2,4-triazines $\underline{9}$, $\underline{12}$, $\underline{13}$ proceed by a carbanionic mechanism. Paudler et al. (20, 23) proposed both mechanisms for the dimerization of 5H-1,2,4-triazines under the influence of KCN, NaOMe or K/NH₃ yielding 5,5'-bi-1,2,4-triazines. A radical-anionic mechanism has been suggested by Newkome (30) for the synthesis of bipyridines by metalation of pyridine with lithium di*iso* propylamide.

Further work in this area is in progress, especially for getting insight into the mechanism of the reaction leading to 6,6'-bi-1,2,4-triazines and the influence of trialkylchlorosilanes in this reaction.

Experimental

All manipulations were carried out under argon. - THF was dried with a benzophenone-sodium mixture and distilled directly before use. - Melting points were determined with a melting point microscope (Fa. C. Reichert) and are uncorrected. - ¹H-NMR spectra were recorded with a Bruker WM 300 instrument with tetramethylsilane as internal standard. - Mass spectra were recorded with a Varian 311 A with data system Tecnivent 110. - For column chromatography (CC) silica gel (0.063-0.2 mm; Fa. Macherey-Nagel) was used.

3-Aryl-1,2,4-triazine-diethylcarboxamides <u>7a</u>, <u>b</u>: To a solution of diethylamine (140 μ l, 1.35 mmol) in absol. dichloromethane (3.5 ml) triethyl aluminum (680 μ l, 1.35 mmol in *n*-hexane) was added at 0 °C. The solution was warmed to 20 °C and stirred for 1 h. <u>6a</u>, <u>b</u> (26) (1.35 mmol) was added. After 12 h at 20 °C a mixture of 2 N hydrochloric acid (1.8 ml) and water (8.5 ml), and then a saturated sodium hydrogen carbonate solution was added (until pH = 9). The organic phase was separated and the aqueous phase extracted with dichloromethane (4 x 30 ml). The combined organic phases were dried with magnesium sulfate. The solvent was evaporated and the residue purified by CC on silica gel (ethyl acetate/cyclohexane 1:2). Results and physical data are listed in tables 3 and 4.

				Analysis:		Calculated	
		M .p.	Formula			Found	
No.	Yield	[°C]	Mol mass	С	Н	N	
39	46 %	230	$C_{20}H_{14}N_{1}O_{2}$	64 51	4 33	22.57	
		(ethanol)	(372.4)	64 52	4 14	22.49	
3h	9%	228 - 229	$C_{22}H_{20}N_{c}O_{2}$	65 99	5.03	20.99	
<u></u>	270	(ethanol)	(400 4)	65.79	5.05	20.95	
3c	40 %	246	C20H14Cl2N6O2	54.44	3.20	19.05	
		(ethyl acetate)	(441.3)	54.32	3.11	19.23	
4a	17%	190	$C_{20}H_{18}N_6O_2$	64.16	4.85	22.45	
		(ethyl acetate)	(374.4)	64.08	4.74	22.27	
4b	51 %	164 - 166	$C_{22}H_{22}N_6O_2$	65.66	5.51	20.88	
		(ethyl acetate)	(402.5)	65.80	5.50	20.86	
<u>5a</u>	41 %	132	$C_{11}H_9N_3O_2$	61.39	4.21	19.53	
		(<i>n</i> -hexane)	(215.2)	61.51	4.19	19.65	
<u>5b</u>	39 %	162	$C_{12}H_{11}N_3O_2$	62.87	4.84	18.33	
		(<i>n</i> -hexane)	(229.2)	62.85	4.73	18.51	
<u>7a</u>	65 %	91 - 92	$C_{14}H_{16}N_4O$	65.60	6.29	21.86	
		(n-hexane)	(256.3)	65.47	6.29	21.70	
<u>7b</u>	72 %	58	$C_{15}H_{18}N_4O$	66.65	6.71	20.73	
		(<i>n</i> -hexane)	(270.3)	66.39	6.69	20.80	
<u>9a</u>	70 %	220 - 221	$C_{28}H_{30}N_8O_2$	65.87	5.92	21.94	
		(ethanol)	(510.6)	65.86	5.97	22.13	
<u>9b</u>	70 %	255	$C_{30}H_{34}N_8O_2$	66.90	6.36	20.80	
		(ethyl acetate)	(538.7)	66.89	6.45	20.88	
<u>12</u>	21 %	192	$C_{30}H_{20}N_6O_2$	72.57	4.06	16.93	
		(ethanol)	(496.5)	72.58	3.90	17.07	
<u>13</u>	24 %	233	$C_{30}H_{20}N_6$	77.57	4.34	18.09	
		(ethyl acetate)	(464.5)	77.44	4.30	18.19	

Table 3: Yields, melting points and elemental analyses of the 1,2,4-triazines 3 - 5, 7, 9, 12, 13

5.5'-Dimethoxy-6,6'-bi-1,2,4-triazines $\underline{3a} - \underline{c}$ and 1,6-dihydro-5,5'-dimethoxy-6,6'-bi-1,2,4-triazines $\underline{4a}$, \underline{b} : To a solution of BuLi (12 mmol in *n*-hexane) in THF (50 ml) 2,2,6,6-tetramethylpiperidine (2.4 ml, 14 mmol) was

added at -30 °C. The solution was warmed to 0 °C and stirred for 30 min. After cooling to -100 °C 1a (31), 1b (1) or 1c (32) (3 mmol) and chlorotrimethylsilane (1.7 ml, 12 mmol) were added simultaneously by two syringes, keeping the temperature below -95 °C. The mixture was stirred for 2 h at -100 °C, then a mixture of conc. hydrochloric acid (2 ml), methanol (2 ml) and THF (8 ml) was added and the solution warmed slowly to room temp. A saturated sodium hydrogen carbonate solution was added (until pH =8), the organic solvents were removed under reduced pressure and the aqueous solution extracted with dichloromethane (3 x 30 ml). The combined organic phases were dried with magnesium sulfate, the solvent removed and the residue separated by CC (ethyl acetate/cyclohexane 1:2). 3a: $R_f = 0.29$, 4a: $R_f = 0.23$, 3b: $R_f = 0.45$, 4b: $R_f = 0.37$, 3c: $R_f = 0.26$. Results and physical data are listed in tables 3 and 4.

6-Lithio-5-methoxy-1,2,4-triazines 2a, b and 5-Lithio-1,2,4-triazine-6-diethylcarboxamides 8a, b: According to the precedure described previously (1), to a solution of BuLi (8 mmol in *n*-hexane) in THF (40 ml) 2,2,6,6-tetramethylpiperidine (1.6 ml, 9.3 mmol) was added at -30 °C. The solution was warmed to 0 °C and stirred for 30 min. After cooling to -100 °C 1a (31), 1b (1), 7a, b (8 mmol) in THF (5 ml) was added, keeping the temp. below -95 °C. The mixture was stirred for 60 min at -100 °C and used for the following reactions.

5-Methoxy-1,2,4-triazine-6-carbaldehydes $\underline{5a}$, \underline{b} : To a solution of $\underline{2a}$, \underline{b} (2.0 mmol) in THF N-formylpiperidine (0.9 ml, 8 mmol) was added with stirring at -100 °C. After 2 h stirring at -100 °C the mixture was hydrolyzed and worked up as described for $\underline{3a}$, \underline{b} . CC: ethyl acetate/cyclohexane 2:3; $\underline{3a}$: $R_f = 0.38$, $\underline{5a}$: $R_f =$ 0.25; $\underline{3b}$: $R_f = 0.47$, $\underline{5b}$: $R_f = 0.35$. Results and physical data in tables 3 and 4.

5,5'-Bi-1,2,4-triazine-6,6'-bis-diethylcarboxamides <u>9a</u>, <u>b</u>: a.) The solution of <u>8a</u>, <u>b</u> in THF was stirred at -100 °C. After 1 h at -100 °C the mixture was hydrolyzed and worked-up as described for <u>3a</u>, <u>b</u>. Purification by CC on silica gel with ethyl acetate/cyclohexane (1:2). Results and physical data are listed in tables 3 and 4.

b) To a solution of BuLi (4.0 mmol in *n*-hexane) in THF (25 ml) 2,2,6,6-tetramethylpiperidine (0.85 ml, 4.7 mmol) was added at -30 °C. The solution was warmed to 0 °C and stirred for 30 min. After cooling to -100 °C, <u>7b</u> (24) (272 mg, 1.0 mmol) and chlorotrimethylsilane (0.5 ml, 4.0 mmol) were added simultaneously by two syringes, keeping the temperature below -95 °C. Hydrolysis and work-up as before yielded 30 % <u>9b</u>.

c) To a solution of <u>8a</u>, <u>b</u> (2.0 mmol) in THF benzaldehyde (0.86 ml, 8 mmol) was added with stirring at -100 °C for 1 h. Hydrolysis and work up as before yielded 59 % <u>9b</u> and 59 % <u>9b</u>.

3,3',6,6'-Tetraphenyl-5,5'-bi-(1,2,4-triazine) 4,4'-dioxide <u>12</u> and 3,3',6,6'-tetraphenyl-5,5'-bi-1,2,4triazine <u>13</u>: a) To a solution of BuLi (4 mmol in *n*-hexane) in THF (25 ml) 2,2,6,6,-tetramethylpiperidine (0.85 ml, 4.7 mmol) was added at -30 °C. The solution was warmed to 0 °C and stirred for 30 min. After cooling to -100 °C 3,6-diphenyl-1,2,4-triazine 4-oxide <u>10</u> (26) (498 mg, 2 mmol) and chlorotrimethylsilane (0.5 ml, 4 mmol) were added simultaneously by two syringes, keeping the temperature below -95 °C. Hydrolysis and work-up as described for <u>3a</u>, <u>b</u>. CC: ethyl acetate/cyclohexane (1:2); <u>12</u>: $R_f = 0.26$; <u>13</u>: $R_f = 0.38$. Results and physical data are listed in tables 3 and 4.

b) The same procedure as described above, but without adding chlorotrimethylsilane gave the same result.

	¹ H-NMR data (CDCl ₃)	MS: m/z (%)
No.	300 MHz, δ values	(70 eV) ^[a]
<u>3a</u>	8.53, 7.47 (m, 10 H); 4.12 (s, 6 H)	372 (73) [M ⁺],
		110 (100)
<u>3b</u>	8.43, 7.28 (m, 8 H); 4.09 (s, 6 H); 2.39 (s, 6 H)	400 (33) [M ⁺],
		110 (100)
<u>3c</u>	8.47, 7.45 (m, 8 H); 4.10 (s, 6H)	440 (51) [M ⁺ , ³⁵ Cl, ³⁵ Cl]
		442 (36) [M ⁺ , ³⁵ Cl, ³⁷ Cl]
		444 (5) [M ⁺ , ³⁷ Cl, ³⁷ Cl], 110 (100)
<u>4a</u>	8.35, 7.90, 7.43, 7.25 (m, 10 H); 6.40 (br. s,	374 (100) [M ⁺]
	1 H); 5.15 (s, 1 H); 4.11 (s, 3 H); 4.07 (s, 3 H)	
<u>4b</u>	8.24, 7.79, 7.19, 7.06 (m, 8 H); 6.34 (s, 1 H);	402 (100) [M ⁺]
	5.12 (s, 1 H); 4.10 (s, 3 H); 4.06 (s, 3 H); 2.33	
	(s, 3 H); 2.25 (s, 3 H)	
<u>5a</u>	10.39 (s, 1 H); 8.62, 7.58 (m, 5 H); 4.29 (s, 3 H)	215 (100) [M ⁺]
<u>5b</u>	10.36 (s, 1 H), 8.50, 7.37 (m, 4 H); 4.28 (s, 3 H),	229 (81) [M ⁺],
	2.47 (s, 3 H)	117 (100)
<u>7a</u>	9.02 (s, 1 H); 8.55, 7.56 (m, 5 H); 3.63 (q, J =	256 (10) [M ⁺],
	7.1 Hz, 2 H); 3.62 (q, J = 7.1 Hz, 2 H), 1.32 (t,	72 (100)
	J = 7.1 Hz, 3 H); 1.31 (t, J = 7.1 Hz, 3 H)	
<u>7b</u>	9.01 (s, 1 H); 8.46, 7.36 (m, 4 H); 3.64 (q, <i>J</i> =	270 (31) [M ⁺],
	7.1 Hz, 4 H); 2.45 (s, 3 H); 1.33 (t, <i>J</i> = 7.1 Hz,	72 (100)
	3 H); 1.32 (t, <i>J</i> = 7.1 Hz, 3 H)	
<u>9a</u>	8.49, 7.53 (m, 10 H); 3.52 (q, J = 7.1 Hz, 4 H);	510 (44) [M ⁺],
	3.42 (q, J = 7.1 Hz, 4 H); 1.18 (t, J = 7.1 Hz,	72 (100)
	3 H); 1.03 (t, <i>J</i> = 7.1 Hz, 3 H)	
<u>9</u> b	8.37, 7.29 (m, 8 H), 3.51 (q, <i>J</i> = 7.1 Hz, 4 H);	538 (36) [M⁺],
	3.41 (q, <i>J</i> = 7.1 Hz, 4 H); 2.39 (s, 6 H); 1.17	72 (100)
	(t, J = 7.1 Hz, 6 H); 1.04 (t, J = 7.1 Hz, 6 H)	
<u>12</u>	8.55, 8.42, 7.58, 7.43, 7.29, 7.11 (m, 20 H)	496 (33) [M [⁺]]
		464 (100)
<u>13</u>	8.63, 7.60, 7.36, 7.22, 7.03 (m, 20 H)	464 (100) [M ⁺]

Table 4: Selected spectroscopic data of the 1,2,4-triazines 3 - 5, 7, 9, 12, 13

^[a] 4a, b, 12, 13: FD-spectra

References and Notes

- [#] Dedicated to Professor Miha Tisler on the occasion of his 70th birthday.
- (1) Part I: N. Plé, A. Turck, G. Quéguiner, B. Glassl, H. Neunhoeffer, Liebigs Ann. Chem. 583 (1993)
- (2) V. Snieckus, Chem. Rev. 90, 879 (1990)
- (3) G. Queguiner, F. Marsais, V. Snieckus, J. Epsztain in Advances of Heterocyclic Chemistry (Ed.: A. R. Katritzky) Academic Press INC. 1991, vol. 52, p. 187 304
- (4) A. Godard, F. Marsais, N. Ple, F. Trecourt, A. Turck, G. Queguiner, Heterocycles 40, 1055 (1995)
- (5) R. Radinov, C. Chanev, M. Haimova, J. Org. Chem. <u>56</u>, 4793 (1991)
- (6) R. Radinov, H. Haimova, E. Simova, Synthesis 886 (1986)
- (7) A. Turck, N. Ple, G. Queguiner, *Heterocycles* <u>37</u>, 2149 (1994)
- (8) A. Turck, L. Mojovic, G. Queguiner, Synthesis 881 (1988)
- (9) A. Turck, D. Trohay, L. Mojovic, N. Plé, G. Queguiner, J. Organometal. Chem. <u>412</u>, 301 (1991)
- (10) A. Turck, N. Ple, G. Mojovic, G. Queguiner, J. Heterocycl. Chem. 27, 1377 (1990)
- (11) T. J. Kress, J. Org. Chem. <u>44</u>, 2081 (1979)
- (12) A. Wada, J. Yamamoto, S. Kanatomo, Heterocycles 26, 585 (1987)
- (13) A. Wada, J. Yamamoto, Y. Hamaoko, K. Ohki, S. Nagai, S. Kanatomo, J. Heterocycl. Chem. 27, 1831 (1990)
- (14) N. Ple, A. Turck, E. Fiquet, G. Queguiner, J. Heterocycl. Chem. 28, 283 (1991)
- (15) N. Ple, A. Turck, F. Bardin, G. Queguiner, J. Heterocycl. Chem. 29, 467 (1992)
- (16) B. Glassl, S. Foro, H. Neunhoeffer, H.-J. Lindner, Z. Kristallogr. 211, 65 (1996)
- (17) J.-K. Lee, Kyungpook National University, Department of Chemistry, Taegu, Korea, private communication.
- (18) A. Turck, N. Ple, V. Tallon, G. Queguiner, J. Heterocycl. Chem. 30, 1491 (1993)
- (19) M. Grignon-Dubois, M. Fialeix, Can. J. Chem. 71, 754 (1993)
- (20) D. K. Krass, T.-K. Chen, W. W. Paudler, J. Heterocycl. Chem. 10, 343 (1973)
- (21) S. Konno, S. Ohba, M. Sagi, H. Yamanaka, Heterocycles 24, 1243 (1986)
- (22) S. Konno, S. Ohba, M. Sagi, H. Yamanaka, Chem. Pharm. Bull. 35, 1378 (1987)
- (23) D. K. Krass, W. W. Paudler, J. Heterocycl. Chem. 11, 43 (1974)
- (24) A. Rykowski, H. C. van der Plas, Recl. Trav. Chim. Pays-Bas 204 (1975)
- (25) A. Rykowski, H. C. van der Plas, J. Heterocycl. Chem. 19, 653 (1982)
- (26) H. Neunhoeffer, D. Reichel, B. Cullmann, I. Rehn, Liebigs Ann. Chem. 631 (1990)
- (27) D. Döpp, H. Döpp. Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-1985, vol. E5, p. 985
- (28) H. Neunhoeffer, V. Böhnisch, Liebigs Ann. Chem. 153 (1976)
- (29) B. Glassl, S. Foro, H. Neunhoeffer, H.-J. Lindner, Z. Kristallogr., 211, 667 (1996)
- (30) G. R. Newkome, D. C. Hager, J. Org. Chem. <u>47</u>, 599 (1982)
- (31) J. Daunis, R. Jaquier, C. Piegière, Tetrahedron <u>30</u>, 3171 (1974)
- (32) 1c was prepared by methylation of 3-(4-chlorophenyl)-1,2,4-triazin-5(2H)-one (33) as described in ref. (1).
- (33) H. Hammann, Dissertation, Technische Hochschule Darmstadt 1983.

Received August 26, 1996

520